9^x=(1/3)^(2x-4)

Simple and best practice solution for 9^x=(1/3)^(2x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9^x=(1/3)^(2x-4) equation:



9^x=(1/3)^(2x-4)
We move all terms to the left:
9^x-((1/3)^(2x-4))=0
Domain of the equation: 3)^(2x-4))!=0
x∈R
We add all the numbers together, and all the variables
9^x-((+1/3)^(2x-4))=0
We multiply all the terms by the denominator
9^x*3)^(2x+1-4))-((=0
We add all the numbers together, and all the variables
9^x*3)^(2x-3))-((=0
We add all the numbers together, and all the variables
9^x*3)^(2x=0
Wy multiply elements
27x^2=0
a = 27; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·27·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:
$x=\frac{-b}{2a}=\frac{0}{54}=0$

See similar equations:

| 5/3x=-3x+2/3 | | -5x-12=57 | | 2x=18-1=33 | | 3/4/t=1/4 | | 4(x-5)+3=2(2x+9) | | 2(2/3)j=15 | | 17=5+x/7 | | 1/2(x+8)-0=2 | | (2x-6)^1/4=8 | | -w=-5+4w | | (x+2)(10)=x(14) | | x^2+6.25x+5.25=0 | | -1z=10 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=0 | | X+133=63+x | | 3a-7=-3 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=33.1 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=33,1 | | 5(2x-10)+14÷2=19 | | .7x=9 | | 120=2x-x | | T-3(t+3/4)=2t+3 | | 13-6x=14x | | 4=2x–6 | | 37+.25x=82 | | X*(x/2)=x*0.5x | | 3+x/3=22 | | 3-5n=9n+17 | | 5x+24=-3x-8 | | X^-18x+74=0 | | 1+9(x-7)=1-8(x-2) | | y+9=25 |

Equations solver categories